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The evolutionary rates of protein-coding genes in an organism
span, approximately, 3 orders of magnitude and show a universal,
approximately log-normal distribution in a broad variety of species
from prokaryotes to mammals. This universal distribution implies
a steady-state process, with identical distributions of evolutionary
rates among genes that are gained and genes that are lost. A
mathematical model of such process is developed under the single
assumption of the constancy of the distributions of the propensi-
ties for gene loss (PGL). This model predicts that genes of different
ages, that is, genes with homologs detectable at different phylo-
genetic depths, substantially differ in those variables that correlate
with PGL. We computationally partition protein-coding genes from
humans, flies, and Aspergillus fungus into age classes, and show
that genes of different ages retain the universal log-normal dis-
tribution of evolutionary rates, with a shift toward higher rates in
‘‘younger’’ classes but also with a substantial overlap. The only
exception involves human primate-specific genes that show a
heavy tail of rapidly evolving genes, probably owing to gene
annotation artifacts. As predicted, the gene age classes differ in
characteristics correlated with PGL. Compared with ‘‘young’’ genes
(e.g., mammal-specific human ones), ‘‘old’’ genes (e.g., eukaryote-
specific), on average, are longer, are expressed at a higher level,
possess a higher intron density, evolve slower on the short time
scale, and are subject to stronger purifying selection. Thus, genome
evolution fits a simple model with approximately uniform rates of
gene gain and loss, without major bursts of genomic innovation.

gene age � gene expression � genome evolution � intron density

All genomes are collections of genes that widely differ with
respect to their histories and characteristic rates of evolution.

In prokaryotes, a major phenomenon that shapes evolutionary
histories of genes is horizontal gene transfer owing to which each
bacterial or archaeal genome contains genes from many different
sources (1–3). Eukaryotes are chimeric organisms to begin with,
owing to the ancient mitochondrial endosymbiosis (4–6), and
different eukaryotic lineages have experienced massive influx of
bacterial genes as a result of secondary endosymbiosis, plants being
the premier case in point (7). Apart from endosymbiosis, horizontal
gene transfer in eukaryotes seems to be uncommon but both loss
of genes and emergence of new genes, apparently, have been
extensive throughout eukaryotic evolution (8, 9).

The mechanisms that lead to the birth of new genes are not fully
understood. The most common route of innovation is thought to be
gene duplication followed by a major acceleration of evolution so
that the similarity to the ancestral genes becomes undetectable
(10–12). Of course, more exotic modes of innovation, such as the
actual origin of protein-coding genes from noncoding sequences
(13), also might contribute to genome evolution but their contri-
butions are unlikely to be comparable to that of gene duplication.
Furthermore, loss of genes, which is an intrinsic aspect of the
evolutionary process and was extensive in some lineages (9, 14, 15),

also can produce the appearance of emergence of new genes when
a gene present in a particular lineage seems novel because its
homologs in other lineages have been lost in the course of evolution.
The processes of gene gain and loss are inextricably linked in that
both, typically, involve a period of evolutionary ‘‘free fall’’ when a
gene is free from the constraints of purifying selection.

Systems biology enriched our outlook of biological evolution by
revealing complex and, often, unexpected connections between
functional and evolutionary attributes of genes (16–20). Tradition-
ally, it is assumed, explicitly or more often implicitly, that the
characteristic rate of evolution of a protein-coding gene depends,
primarily, on the structural-functional constraints that are intrinsic
to the encoded protein (21). In a prescient early discussion, Wilson
et al. (22) proposed that the sequence evolution rate of a protein-
coding gene would depend on, first, the intrinsic structural-
functional constraints and, second, the biological role of the protein
in the organism: Ri � f(Pi)f(Qi) where Ri is the sequence evolution
rate, f(Pi) is the functional-constraint factor, and f(Qj) is the
dispensability (biological role) factor. Because the functions and
structures of proteins are, indeed, widely different and so are the
rates of sequence evolution, it was generally (and more or less
tacitly) assumed that the first term in Wilson’s equation was the
decisive one.

With the advent of functional genomics and systems biology, it
became possible to measure the correlations between many
‘‘genomic’’ and ‘‘phenomic’’ variables (16–20). Surprisingly, little if
any correlation was found to exist between the fitness effect of a
gene knockout and the rate of its sequence evolution: at best,
nonessential genes evolve slightly faster than essential genes (14,
23–26). By contrast, but also unexpectedly, a highly significant,
although moderate in magnitude, negative correlation has been
shown to exist between gene expression level and the sequence
evolution rate: highly expressed genes evolve significantly slower
than lowly expressed ones (14, 27–29). So far, among the analyzed
phenomic variables, expression level is definitely the best correlate
of the sequence evolution rate (14, 28, 30, 31). The analysis of the
connections between other genomic and phenomic variables, in-
cluding but not limited to the numbers of physical and genetic
interactions, positions in different types of networks, and codon
usage, and the evolution rate yielded a complex pattern of corre-
lations (16–19, 29, 32). However, all these correlations are weaker
than that seen for the expression level, so that the independence and
hence the ultimate relevance of these correlations remain in
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question. In a separate line of analysis, it has been shown that the
length of the protein encoded by a gene is significantly and
negatively correlated with the evolution rate, that is, longer pro-
teins, on average, are more highly conserved in evolution than short
ones (33).

Taken together, these findings might throw new light on the
nature of the fundamental factors that affect gene evolution. It has
been suggested that specific functional constraints might not be
nearly as crucial as generally thought. Instead, the real driving force
of protein evolution could be the selection for protein robustness to
misfolding caused by amino acid misincorporation, primarily, dur-
ing translation (28). The fitness cost of misfolding is an intrinsic
feature of protein domains but is thought to be amplified by the rate
of translation, hence the observed negative correlation between the
expression level and sequences evolution rate (31).

Gene evolution can be characterized not only by the sequence
evolution rate, but also by the propensity of a gene to be lost (or,
conversely, retained) during evolution. A gene’s rate of loss/
retention during evolution appears to be more naturally linked to
the broadly conceived biological importance than the sequence
evolution rate considering that, almost by definition, a gene will not
be lost in any lineage if and only if it is essential (and there is no
substitute). Propensity for gene loss (PGL) is linked to the expres-
sion level by a negative correlation that is as strong as, if not stronger
than, the correlation between expression and the sequence evolu-
tion rate (14). Moreover, unlike the sequence evolution rate, the
PGL showed a highly significant correlation with a gene’s dispens-
ability: in yeast, genes with a low loss rate were much more likely
to be essential than genes with a high loss rate (14, 15).

Here, we demonstrate the universality of the distribution of
evolutionary rates of protein-coding genes in diverse lineages of
eukaryotes and prokaryotes and describe a simple model of genome
evolution that is compatible with this universal distribution and
predicts substantial differences between the properties of genes that
belong to different ‘‘age classes,’’ that is, possess detectable ho-
mologs at distinct phylogenetic depths. We delineate age classes of
genes in humans, flies and Aspergillus fungus, and reveal systematic
differences between the age classes in terms of expression, protein
size, intron density, short-term evolutionary rates, and selection
pressure.

Results
Universal Distribution of Evolutionary Rates of Genes. Previous work
has shown that the distributions of evolution rates of genes were
very similar even in genomes separated by a wide range of evolu-
tionary distances (34). We verified this observation, using new
genomic data from eukaryotes, bacteria, and archaea, and found
that all rate distributions across orthologous gene sets from closely
related pairs of species representing the 3 domains of cellular life

are virtually indistinguishable (Fig. 1). In an extension of this
observation, normalized distributions of evolution rates between
orthologs from one species and its relatives at different evolutionary
distances are virtually identical after normalization as illustrated by
the comparison of human against other vertebrates and of Aspergil-
lus against other fungi (see SI Appendix). This (approximately)
log-normal distribution emerges as a universal of genome evolution
that applies not only to complete, genome-wide sets of genes but
also to various subsets of genes as described below. Put another way,
these findings suggest that the distribution of evolutionary rates of
genes across genomes remained (almost) the same throughout the
3 billion years or so that cellular life exists on earth.

Steady State Model of Gene Gain and Loss During Genome Evolution.
Evolution of genomes involves extensive loss and gain of genes, and
the PGL values of individual genes differ widely (14, 15). Never-
theless, the distribution of evolutionary rates across genes remains
(nearly) constant over enormous time spans (Fig. 1), with the rather
unexpected implication that genes that are lost have the same rate
distribution as gained genes. To examine this prediction, we devel-
oped a simple mathematical model of genome evolution by gene
gain and loss.

Consider a genome of a constant size under a steady state process
of gene gain and loss. It can be easily shown (see SI Appendix) that,
if the intrinsic loss rate x (equivalent of the PGL) is distributed with
the probability density function g(x) in newly acquired genes, the
genome arrives at an equilibrium with the joint distribution of gene
loss rates x and gene ages a l(a, x) � e�axg(x). Several corollaries
follow from this relation: (i) The overall distribution of the gene loss
rates in the genome is f(x) � 1

x
g(x). (ii) The genes that are lost at any

given time have the same distribution of their loss rates as the genes
that are gained (g(x)). (iii) The overall distribution of the gene ages
in the genome is p(a) � �e�axg(x)dx. (iv) For any given interval of
gene ages A � [a1,a2] (gene age class), there exists a distribution of
gene loss rates x that is specific to the given age class
q�x, A� � �a1

a2 e�axg�x�da. (v) Considering that other characteristics
of genes, such as expression level, sequence evolution rate, and
others, are significantly (even if not necessarily strongly) correlated
with the PGL (14, 35), it follows that these variables also will be
distributed (nearly) identically among genes that are lost and genes
that are gained. Thus, the model validates the qualitative implica-
tion of the constant distribution of evolutionary rates. (vi) The
correlation between PGL and other variables further implies that all
these variables will also have distinct, age-class-specific distribu-
tions. In particular, it can be shown that, for ‘‘old’’ genes, the
distributions of the PGL and variables that are positively correlated
with the PGL, such as the sequence evolution rate, will be shifted
toward lower values (slow evolution, low loss rate) compared with
‘‘young’’ genes (see SI Appendix). Conversely, the distributions of

0.1 1 10
normalized evolution rate (log scale)

Homsa

Drome

Aspfu

Salsp

Bursp

Metma

Fig. 1. Distributions of nucleotide sequence evolu-
tion rates for pairs of closely related eukaryotic,
archaeal, and bacterial genomes. The evolutionary
distances were calculated using the Jukes–Cantor
correction and normalized so that the mean of each
distribution was equal to 1. Metma, Methanococcus
maripaludis C5 vs. M. maripaludis C7 (Euryarcha-
eota); Bursp, Burkholderia cenocepacia MC0 –3 vs. B.
vietnamiensis G4 (Proteobacteria); Salsp, Salinispora
arenicola CNS-205 vs. S. tropica CNB-440 (Actinobac-
teria). The probability density curves were obtained
by Gaussian-kernel smoothing of the individual data
points (64).
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variables that are negatively correlated with the PGL are predicted
to be shifted toward higher values in older age classes, e.g., ‘‘old’’
genes are expected to be highly expressed, on average.

Age Classes of Eukaryotic Genes and Their Distinct Features. We
sought to test the prediction of the steady-state model of genome
evolution that genes of different age classes (genes gained at
different time during the evolution of a lineage) substantially differ
in the characteristics that are correlated with the PGL. There is no
single, optimal method to define the age of a gene. Considering that
new genes typically emerge as a result of gene duplication, one of
the more sophisticated approaches includes evolutionary recon-
structions that map each duplication to a specific branch in the
corresponding species tree and consider that branch the ‘‘birth
date’’ of the gene in question (36, 37). However, this approach is
both labor-consuming and error-prone, so we used a more straight-
forward (and cruder) procedure for partitioning genes into age
classes. A gene was considered to belong to a certain class, for
instance, mammal-specific genes in human, if the amino acid
sequence of the encoded protein failed to show significant sequence
similarity (exceeding the specified expectation value threshold; see
Methods for details) to protein sequences outside the given taxon (in
this case, mammals). The procedure was fine-tuned to eliminate
potential artifacts, such as contaminations, and appropriate major
taxonomic levels were chosen for the 3 analyzed genomes, human,
the fly Drosophila melanogaster, and the ascomycete fungus As-
pergillus fumigatus (see Methods for details).

On the basis of the taxonomic breakdown of the nonredundant
protein sequence database search results, the gene sets from the 3
organisms were each partitioned into 8 age classes (Fig. 2); quali-
tatively, the same results were obtained with a series of cut-off
values used for the assignment of genes to classes (see SI Appendix).
The 2 ‘‘ancient’’ classes (Eukaryota and Cellular Organisms) were
the same for all 3 analyzed organisms whereas the ‘‘younger’’ classes
differed in accordance with the taxonomy (compare Fig. 2 A–C). In
all 3 genomes, the most ‘‘ancient’’ class‘‘ (Cellular Organisms) was
also most populous although only in Aspergillus the excess of genes
in this class over others was dramatic (Fig. 2C), perhaps owing in
part to fungal-specific acquisition of bacterial genes via HGT. Most
of the classes, with the exception of the ’’Fungi-Metazoa‘‘ class,
included sufficiently large numbers of genes for statistically valid
comparisons of various features as described below.

We then compared the short term evolution rates of the genes
from different age classes. To this end, probable orthologs were
identified in the corresponding closely related organisms (such
orthologs were detected for the majority but not all genes,
presumably in large part owing to gene annotation errors, but
possibly, also because of lineage-specific gene duplications and
gene losses; Fig. 2), and evolutionary distances were calculated.
The distributions of these distances all have the same shape that
closely resembles the universal, approximately log-normal dis-
tribution (Fig. 1) but the distributions for the younger classes are
shifted toward greater evolutionary distances (rates) compared
with the distributions for older classes (Fig. 3). For example,
among human genes, the mammal-specific genes on average
evolve substantially (and highly significantly) faster than chor-
date-specific genes or genes that belong to the more ‘‘ancient’’
classes (Fig. 3A), and very similar results were seen for the other
two organisms (Fig. 3BC).

The significant differences in the rate distributions between the
age classes notwithstanding, all of the distributions strongly overlap
(Fig. 3). In other words, there is, for instance, a considerable
number of mammal-specific genes that evolved very slowly since the
divergence of human and macaque from their last common ances-
tor, and conversely, ancient human genes with homologs in pro-
karyotes that have been evolving very fast over the last �23 million
years [after the divergence of humans and macaques form their last
common ancestor (38)]. Moreover, there is almost no difference in

the distributions of the evolutionary rates between the 5 ‘‘oldest’’
gene classes in each of the 3 organisms (Fig. 3). Thus, the short term
evolutionary rates seem to preserve the ‘‘memory’’ of the origin of
the respective genes over several hundred million years but the
memory of the deepest evolutionary past is lost.

The only rate distribution that was noticeably different from the
others was the one for the human primate-specific genes. This
distribution contains an extremely heavy tail of rapidly evolving
genes (Fig. 3A), an observation suggesting that this class of human
genes could include a large admixture of incorrect gene predictions
that are carried over to the annotation of the macaque genome. A
recent analysis of ‘‘primate-specific genes’’ led to the conclusion
that most of these were false predictions because there was not
demonstrable difference between the properties of these ‘‘genes’’
and noncoding sequences (39). The present results, however,
indicate that the distribution of the evolutionary rates of primate-
specific genes contains a substantial approximately log-normal
portion, suggesting that over half of the members of this class are
bona fide genes (Fig. 3A).

We compared the age classes of eukaryotic genes in terms of the
pressure of purifying selection that affects protein coding sequences
by using the measure commonly used for this purpose, the ratio of
the rates of nonsynonymous to synonymous substitutions, dN/dS
(40, 41). The results were congruent with the observations on
evolutionary rates in that the younger classes were characterized by
a relatively weak median selection pressure whereas the older
classes appeared to be subject to a substantially stronger purifying
selection. As with the evolutionary rates, the effect disappeared in
comparisons between the oldest classes, e.g., metazoan-specific
human genes evolved under approximately the same selective
pressure as the eukaryote-specific genes (Fig. S1).

The proteins encoded by genes in the new age classes were
significantly shorter than those encoded by genes from the older
classes. The difference in protein lengths was dramatic between the
youngest and the old classes, e.g., eukaryote-specific proteins in
humans are, on average, twice as long as the mammal-specific
proteins, but similarly to the case of evolutionary rates and selective
pressure, the difference petered off in the old classes (e.g., from the
metazoan-specific proteins up in humans and flies) (Fig. S2).

The most impressive difference between the age classes of genes
was seen when we compared their characteristic expression levels.
The mammal-specific genes in humans showed an approximately
4-fold lower median EST count than the eukaryotic proteins;
notably, in this comparison, significant differences were seen even
between the older classes, e.g., eukaryote-specific genes had sig-
nificantly more ESTs than animal-specific genes (Fig. 4A). The
results obtained when expression level was determined from mi-
croarray data (Fig. 4B) and a comparison of gene expression
breadth across human tissues (Fig. 4C) revealed a similar, although
somewhat weaker trend. We further investigated the tissue distri-
bution of expression of human genes depending on their apparent
age and detected considerable tissue-specific differences in the ratio
of mean expression levels of ancient (animal-specific and older) and
younger genes (see SI Appendix). There was a highly consistent
trend for higher expression of ancient genes in hematopoetic tissues
whereas the preferential expression of younger genes was seen,
primarily, in nonbrain nerve tissues. Conceivably, these differences
have to do with the extent of differentiation and characteristic cell
proliferation rate of the tissues, with ancient genes preferentially
expressed in the least differentiated, actively proliferating tissues.

We also observed a significant difference in intron density
between the age classes of genes, with a greater density in the
ancient classes (Fig. S3). This observation might seem puzzling
but appears to be compatible with the other distinctions between
the age classes considering that introns are known to contribute
to eukaryotic gene expression (42) and that highly conserved
genes appear to gain introns at a greater rate than poorly
conserved genes (43).
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Functional Distribution of the Genes in Different Age Classes of
Eukaryotic Proteins. The functional characteristics of human genes
in different age classes were determined by analyzing the Gene
Ontology (GO) terms (44) that were significantly enriched in each

class. The distinctions between the classes were immediately obvi-
ous (see SI Appendix). The youngest classes, the primate-specific
and mammal-specific genes, were dominated by genes implicated in
various forms of defense (in particular, diverse aspects of immune
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Fig. 2. Partitioning of eukaryotic
gene sets into age classes. The filled
portion of each bar shows those
genes for which likely orthologs
were identified in the correspond-
ing closely related species, and the
empty portion shows the remainder
of the genes for which orthologs
were not detected. (Top) Homo sa-
piens (orthologs in Macaca mulatta).
(Middle) Drosophila melanogaster
(orthologs in D. simulans). (Bottom)
Aspergillus fumigatus (orthologs in
Neosartorya fischeri).
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response among the mammal-specific genes) and sensory percep-
tion. Some of the detected distinctions between the classes clearly
illustrate functional specialization in the direction from the older to
the younger classes: for instance, among the mammal-specific
genes, the GO term that shows the greatest enrichment is ‘‘sensory
perception of taste’’ whereas ‘‘sensory perception of smell’’ and
‘‘sensory perception of chemical stimulus’’ are among the most-
enriched terms among the chordate-specific genes. The animal-
specific class is enriched, mostly, in genes implicated in develop-
ment and various forms of signal transduction, and regulatory
processes, in particular, regulation of transcription. The genes
characterized by the respective terms were enriched also in the
chordate-specific class but the list is augmented by genes involved
in developmental and signal transduction processes. The fungi-
metazoa class is also enriched in genes that contribute to certain
highly conserved regulatory pathways, in particular, those centered
around the Ras superfamily GTPases. By contrast, the 2 oldest
classes, the eukaryote-specific genes and genes common to cellular
life, are associated, mostly, with biosynthetic (including translation,
transcription and replication) and metabolic processes. The pre-
ponderance of the metabolism-related genes in the, formally, most

ancient class, the genes with homologs in prokaryotes, in part, is
probably explained by the acquisition of these genes from the
mitochondrial endosymbiont.

Overall, not unexpectedly, the genes in the young classes are
involved, mostly, in lineage-specific processes whereas the old
classes consist, primarily, of genes encoding functions that are
common to a broad range if not all cells. This distribution of
functions among the age classes of genes is compatible with the
hypothesis that these classes reflect distinct origins of the respective
genes that, at least, approximately coincide with the emergence of
new, specialized functions.

The difference in expression between age classes of eukaryotic
genes is in part independent of the difference in length and
sequence evolution rate. As shown above, the age classes of
eukaryotic genes have significantly different distributions of se-
quence evolution rates and protein lengths. A previous analysis of
age classes of genes (45) has been countered with the hypothesis
that the appearance of the age classes and all of the differences
between them are explained solely by the homolog detection bias,
i.e., that the ‘‘new’’ classes emerge solely because the respective
genes encode short and/or fast-evolving proteins so that their
homologs in distant taxa are hard to detect (46). This interpretation
was supported by the results of a simulation of evolution of genes
of the same age (46). However, the present results indicate that
detection bias cannot be the only cause of the existence distinct age
classes of genes. On the contrary, the overlap of the rate distribu-
tions between all classes and the lack of significant difference in
either the (short-term) evolutionary rate or the lengths of the
encoded proteins between the ancient classes (e.g., metazoan and
older in animals; Fig. 3 and SI Appendix, Fig. A2) suggest that, at
least, these classes actually include genes of distinct origins.

We performed a more direct test of the relevance of the age
classes of genes as correlates of the gene expression level by using
rank-based linear regression. We found that 0.083 of the original
variance in EST count ranks between the age classes could be
explained through a linear combination of the evolutionary rate (in
this case, the maximum likelihood estimate of the amino acid
distance between human and mouse orthologs) and protein length,
with an effective correlation coefficient of 0.29. However, the rank
residuals showed a highly significant difference between the com-
bined new (primate-specific to metazoa-specific) and old (older
than metazoa-specific) age classes (P � 1.5 � 10�21 using Student’s
t test). Thus, the differences in the expression levels between the age
classes of eukaryotic genes are, at least, in part, independent of the
differences in evolutionary rates and protein lengths, and appear to
comprise an intrinsic characteristic of the age classes. In addition,
we compared the magnitudes of the correlation between the
sequence evolution rate and the expression level for the new and old
genes, and found significant negative correlations in both case, but
with typically higher correlation coefficients for the old classes (see
SI Appendix). Together, these findings support the conclusion that
the new age classes are not a mere artifact of our failure to detect
homologs of small, fast-evolving genes.

Discussion
We found that the distribution of sequence evolution rates is
universal across the entire diversity of life, in agreement with
previous, less extensive observations (34). This universal distribu-
tion is compatible with a simple, steady state model of genome
evolution by gene gain and loss where the distributions of loss rates
(PGL) are the same for the sets of genes gained and lost over any
long time interval. The model implies the existence of age classes
of genes that substantially differ in terms of various evolutionary
and phenomic variables. The empirical analysis of 3 widely diverged
eukaryotic genomes indeed revealed similar distributions of genes
by the apparent ages. In part, the age classes of genes are artificial
groups in that the ‘‘new’’ classes undoubtedly include many genes
that encode short and fast-evolving proteins for which homologs in
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Fig. 3. Distributions of nucleotide sequence evolution rates for different age
classes of eukaryotic genes. The evolutionary distances were calculated as in
Fig. 1 but not normalized. (Top) H. sapiens (vs. M. mulatta). (Middle) D.
melanogaster (vs. D. simulans). (Bottom) A. fumigatus (vs. N. fischeri). The
probability density curves were obtained by Gaussian-kernel smoothing of the
individual data points (64).
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distant taxa exist but are not readily detectable. The age class and
the rate of sequence evolution are inherently dependent variables
but this dependence is nontrivial because we measure relatively

short-term rates of sequence evolution whereas the majority of the
age classes are defined so as to reflect ancient events of gene gain
and loss. Conceivably, the genes in the youngest classes evolve faster
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than those in the ancient classes because, on the relatively small
scale where the evolutionary rate is measured (for instance, the �23
million years separating humans and macaque), these genes still
experience the acceleration associated with their ‘‘birth,’’ e.g.,
around the time of the origin of chordates (�600 Myr). By contrast,
the lack of difference in the rates between the older classes suggests
that the ancient innovations are already ‘‘forgotten,’’ i.e., their
accelerating effect has tapered off. The extensive overlap of the
evolutionary rate distributions (Fig. 3) indicates that ‘‘young’’ genes
cannot be equated with fast-evolving ones, and conversely, ‘‘old’’
genes do not necessarily evolve slowly.

The observations on the age classes of genes and their distinct
evolutionary rate distributions are, at least, qualitatively, compat-
ible with the previous findings that genes in new age classes evolve,
on average, faster than genes in old classes (45). It was argued that
the age classes are sheer artifacts of sequence similarity detection
so that the only conclusion possible from this type of analysis was
that ‘‘slowly evolving genes evolve slowly’’ (46). Our findings are
hardly compatible with this viewpoint. First, as emphasized above,
the rate distributions of age classes in our empirical analysis strongly
overlap, in a sharp contrast to the virtually nonoverlapping distri-
butions yielded by the simulations of Elhaik et al. (46). Second, we
found that the interclass differences in expression levels did not
disappear after correction for evolutionary rate and protein length.
Third, in agreement with previous observations (45), we observed
sharp functional contrasts between genes of different age that seem
to reflect the process of functional specialization during the evo-
lution of a lineage. Indeed, most of the genes in the oldest classes,
not unexpectedly, encode proteins involved in central information
processing functions (translation, transcription and replication) and
metabolism whereas the new classes are enriched for taxon-specific
(e.g., animal-specific) functions such as various forms of defense,
perception, and signal transduction.

The distinctions between the age classes fit the concept of a
gene’s ‘‘status’’ (18, 19, 32): The old classes are enriched for
high-status genes and the new classes consist mostly of low-status
genes. A high status of a gene entails large protein size, evolutionary
conservation including both the low propensity of the gene to be
lost and slow sequence evolution, strong selection pressure, high
expression level, high intron density, and numerous physical and
genetic interactions (not included here); the low-status genes
possess the opposite characteristics. These results are compatible
with the demonstration that nematode genes of different apparent
ages substantially differ in terms of the biological effects of inac-
tivation, with the ancient genes on average being associated with a
higher penetrance than younger ones (47).

The finding that the age classes of genes differ both in the
expression level and in evolution rates is compatible with the
mistranslation-induced misfolding hypothesis according to which
highly expressed genes are subject to stronger purifying selection
than lowly expressed ones because the cost of protein misfolding is
proportional toexpression level (28,30,31).However,additional factors
could both constrain the evolutionary rate and favor higher expression
of ancient genes, for instance, their higher level of pleiotropy.

The sharp functional distinctions between age classes of genes
suggest the possibility that these classes originate from bursts of
functional innovation associated with the advent of new forms
of life, e.g., eukaryotes or, subsequently, animals. A contribution of
such transitional events cannot be ruled out but our present analysis
suggests that a simpler, steady-state model of genome evolution by
gene gain and loss is sufficient to explain the appearance of age
classes, considering the previously demonstrated wide range of the
characteristic loss rates among genes (14, 32). Emergence of
numerous new genes during short time intervals associated with
rapid cladogenesis (48) contrasted to the (near)stasis in between
these bursts of innovation does not seem to be the quantitatively
dominant pattern of the eukaryotic genomic evolution. These
conclusions are at odds with the view that (almost) no new genes

appeared in the �100 million years since the divergence of the
mammalian orders (39) and with the implication of the model of
Elhaik et al. (46) according to which gene birth is, essentially, an
artifact caused by gradual deterioration of sequence similarity
between duplicated genes beyond recognition (hence no distinct
age classes of genes). The present model differs in that, although
duplication is still seen as the principal route of gene evolution, gene
birth appears as a real event whereby rapid divergence shortly after
duplication ushers a gene into a new age class.

The simple model of gene gain and loss used here to account for
the constant distribution of gene evolution rates in evolving ge-
nomes is conceptually analogous to the results of the analysis of the
distribution of the sizes of paralogous gene families in a broad range
of organisms. This universal power-law distribution is accurately
reproduced by simple birth-and-death models (49, 50) despite
substantial functional differences between the families that undergo
lineage-specific expansion in different taxa (51, 52). The congru-
ence of these findings suggests that genome evolution and the
observed properties of genomes can be modeled with considerable
accuracy without directly implicating functional adaptation and
relying instead on general evolutionary properties of genes.

A fundamental question that remains unanswered is why the
evolutionary rate distribution among orthologous genes and the
distributions of the PGL values among gained and lost genes that
sustain the rate distribution under our model apparently remained
the same for billions of years, unaffected by major changes in
genomic and phenotypic properties of organisms. The constancy of
the distributions despite major differences in gene functions across
the range of analyzed organisms and the log-normal shape of the
universal rate distribution seem to imply that they are determined,
primarily, by a combination of stochastic rather than selective
factors. Development of an explicit theory to explain these obser-
vations remains a fundamental challenge for the future.

Methods
Genomic Data. Genome sequences of Homo sapiens (Homsa), Macaca mulatta
(Macmu), Mus musculus (Musmu), Aspergillus fumigatus Af293 (Aspfu) and
Neosartorya fischeri NRRL 181 (Neofi), were obtained from the National Center
for Biotechnology Information RefSeq database (53). Genome sequences of
Drosophila melanogaster (Drome) and D. simulans (Drosi) were obtained from
theFlyBasedatabase.Forthe3 ‘‘master’’genomes(Homsa,DromeandAspfu) the
datasets were reduced to one (the longest) transcript per locus.

Age Classes of Genes. Proteins from the 3 master genomes (Homsa, Drome, and
Aspfu) were used as queries in a BLASTP search (54) against the National Center
for Biotechnology Information RefSeq database with an E value threshold of 0.1
and the composition-based score adjustment (55); taxonomic affiliations of all
hits were recorded. For each of the master genomes, 7 broad taxonomic levels
were defined: Primates, Mammalia, Chordata, Metazoa, Fungi/Metazoa group,
Eukaryota, and cellular organisms for Homsa; Drosophila, Diptera, Insecta, Meta-
zoa, Fungi/Metazoa group, Eukaryota, and cellular organisms for Drome; As-
pergillus, Pezizomycotina, Ascomycota, Fungi, Fungi/Metazoa group, Eukaryota,
and cellular organisms for Aspfu. For each query protein, the number of taxo-
nomically distinct hits was counted at each level; the deepest level at which the
number of hits exceeded the predefined threshold (for the results presented in
the main text, the cut-off E 	 10�6 was used; for the result obtained with other
cut-off values, see SI Appendix) was assigned to the query protein as its point of
evolutionary origin (age class). Proteins that did not have the sufficient number
of hits in any of these classes were assigned to an additional, nominally, the
youngest, age class (species-specific).

Orthologs and Evolutionary Distances. For the 3 ‘‘master’’ genomes, reciprocal
BLASTP searches (E value threshold 1 � 10�6, effective database size 2 � 107, no
low-complexity filtering or composition-based statistics) were performed against
the genomic datasets of their respective close relatives (Homsa-Macmu, Drome-
Drosi and Aspfu-Neofi). Putative orthologs were identified as bidirectional best
hits (56).ProteinsequencesoforthologswerealignedusingtheMUSCLEprogram
(57); the corresponding CDS sequences were aligned codon by codon, using the
protein sequence alignment as the template. Nucleotide P distances were esti-
mated by dividing the raw number of nucleotide differences in the alignment by
thealignment length (excludingsiteswithgaps);nucleotidedifferenceof0.5was
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artificially assigned when the sequences of orthologs were identical. P distances
were converted to linearized nucleotide distances, using the Jukes–Cantor cor-
rection (58). For the nucleotide sequence alignments concatenated within the
age class the maximum likelihood dN/dS ratio was estimated using the PAML
program (59) with equilibrium codon frequencies, basic codon substitution
model and a uniform dN/dS ratio for all codons.

Additionally, Homsa-Musmu orthologs were identified using the same
scheme. Maximum likelihood estimates of the amino acid distances between the
aligned sequences of orthologs were calculated using the PROTDIST program of
the PHYLIP package (60) with the JTT evolutionary model (61) and gamma-
distributed site rates with shape parameter 1.0.

The distributions of the evolutionary rates among orthologous genes were
normalized by computing the geometric mean of all rates and dividing the
original rates by this mean value, thus bringing the geometric mean of the
normalized distribution to 1. The variance of the evolutionary rate was not
normalized.

Gene Expression Data. Human microarray expression profiles were down-
loaded from the UCSC Genome Browser (62), using the table hgFixed.
gnfHumanAtlas2All. Probes without a unique assignment to a gene were

discarded; profiles for the multiple probes associated with the same gene
were averaged. Tissue-specific scores were averaged between the two re-
peats. All scores were normalized by their respective tissue-specific medians.
Median normalized value across all tissues was used to represent the charac-
teristic expression level of a gene. Number of tissues (ranging from 0 to 79)
where the normalized expression value exceeded a threshold (adjusted to
produce an approximately equal proportion of wide- and narrow-expressed
genes) was used to represent the expression breadth of a gene. Human EST
counts were downloaded from the National Center for Biotechnology Infor-
mation Unigene database (53).

Using Gene Ontology for Functional Classification of Genes. The GO terms (44)
associated with the human genes in each age class were identified and analyzed
using the GoMiner program and the UniProtKB protein dataset, false discovery
rate (FDR) cut-off of 0.05 and 100 GoMiner runs to estimate FDR (63).
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